• اطلاعیه ها

    • Amir Sepahvand

      راه اندازی بخش دریافت انجمن   ۱۶/۰۱/۱۶

      در این بخش میتوانید پروژه ها ، نقشه ها ، مقاله ها و ... خود را ارسال نموده و به اشتراک بگذارید. نکته:برای ارسال فایل ابتدا باید عضو انجمن شوید. آموزش تصویری ارسال فایل در بخش دریافت بزودی در انجمن قرار داده خواهد شد. ورود به بخش دریافت (اینجا کلیک کنید)
afzir

بررسی رفتار لرزه ای اتصالات بتن آرمه تقویت شده با دستک فلزی

پست های پیشنهاد شده

به دلایل گوناگون ممکن است سازه های موجود نیاز به بهسازی داشته باشند، این بهسازی، شامل احیاسازی سازه های آسیب دیده به وسیله ی یک زلزله یا عوامل دیگر، یا مقاوم سازی و تقویت یک سازه خسارت ندیده که با آیین نامه های بارگذاری و طراحی ویرایش قدیم یا حتی بدون کد، طراحی و ساخته شده است، می باشد. پس احیاسازی ومقاوم سازی سازه های آسیب پذیر در برابر زلزله امری ضروری است. از طرفی سازه های بتنی بعلت شکل پذیری کمتر نسبت به سازه های فولادی از آسیب پذیری بیشتری در طی زلزله برخوردار هستند. لذا تعمیرات سازه های بتنی بعد از زلزله هم سخت بوده و هم از لحاظ اقتصادی هزینه زیادی دارند. از این رو برای تامین شکل پذیری می توان اعضایی با شکل پذیری بیشتری را بعنوان عضو فیوز در سازه های بتنی استفاده کرد و بعد از زلزله هم براحتی تعویض یا ترمیم نمود. دستک های فولادی می توانند این نقش را در سازه های بتنی داشته باشند. اتصال گیردار و یا مفصلی دستک فلزی می تواند در مقدار سختی جانبی قاب های بتنی تاثیرات چشم گیری داشته باشد. از اینرو تغییرات در سختی جانبی قاب های خمشی بتنی می تواند در رفتار لرزهای سازه های بتنی نقش بسزایی داشته و هم چنین نوع اتصال می تواند در شکل پذیری دستک و نهایتا در تامین شکل پذیری قاب های بتنی اثرگذار باشد. برای بررسی این موضوع ابتدا مدل یک طبقه آزمایشگاهی انجام شده توسط اقای کرنستون در نرم افزار sap مدل سازی شد نتایج مدل ها بر اساس آن بررسی شده است و چهار مدل 3، 7، 10 و 14 طبقه در حالت دستک فلزی با اتصال گیردار و یا اتصال مفصلی در نرمافزار Sap2000 مدل شده و تحت تحلیل تاریخچه زمانی غیرخطی با چند رکورد مقیاس شده قرار گرفته و نتایج سازه ها از جمله جابجایی طبقات، برش پایه سازه ها و … مورد بررسی قرار می گیرد.
تبعات اعمال مساوی قرار دادن ارتفاع تیر با ضخامت سقف
(حذف آویز تیر)
کاهش سختی سازه و افزایش تغییرمکان جانبی آن تحت بارهای جانبی
افزایش خیز تیرهای بتن آرمه تحت بارهای ثقلی و تشدید مسئله خزش
کاهش باربری تیرها در برابر بارهای ثقلی
کاهش باربری سازه در برابر بارهای جانبی و…
نیاز به پژوهش جدید
1- بررسی سیستم قاب خمشی با تیرهای کاهش یافته ارتفاع
2- بررسی آزمایشگاهی اتصالات ضعیف و بهسازی آن ها
3- ارائه الگوی مناسب برای مقاوم سازی اتصالات و قابهای دارای تیرهای بدون آویز
روش تحقیق
   بررسی آزمایشگاهی رفتار موضعی قاب بتن آرمه در اتصالات تیر- ستون مرجع و بهسازی شده

1- طراحی دو نمونه مرجع و ساخت و آماده سازی 5 نمونه اتصال بتنی 
2- بهسازی یا مقاوم سازی نمونه های آسیب دیده و ندیده توسط دستک
و طوقه فلزی
3- انجام آزمایش چرخه ای بر روی نمونه ها
بررسی آزمایشگاهی تاثیر ارتفاع تیر اتصال بتنی و بهسازی اتصالات بتن آرمه با دستک و طوقه فلزی
به طور کلی منحنی هیسترزیس به نمودار نیرو- تغییر مکان (ممان- انحنا و …) پاسخ یک متریال، المان و یا سیستم سازه ای اطلاق می شود. بنابراین کاملا مرتبط با مشخصات رفتاری سیستم مورد مطالعه می باشد. البته در مواردی هم مثل سیستم های میراگر ویسکوز به نحوه بارگذاری نیز وابسته می باشد، اما به طور کلی برای المان های سازه ای متعارف (تیر، ستون، دیوار و…) کاملا وابسته به مشخصات رفتاری المان می باشد و تقریبا تاثیر زیادی از نحوه بارگذاری نمی پذیرد. 

 

به اشتراک گذاری این ارسال


لینک به ارسال
به اشتراک گذاری در سایت های دیگر

برای ارسال دیدگاه یک حساب کاربری ایجاد کنید یا وارد حساب خود شوید

برای اینکه بتوانید دیدگاهی ارسال کنید نیاز دارید که کاربر سایت شوید

ایجاد یک حساب کاربری

برای حساب کاربری جدید در سایت ما ثبت نام کنید. عضویت خیلی ساده است !

ثبت نام یک حساب کاربری جدید

ورود به حساب کاربری

دارای حساب کاربری هستید؟ از اینجا وارد شوید

ورود به حساب کاربری


  • مطالب مشابه

    • توسط afzir
      مقاوم سازی دیوار با FRP
      لایه های مصالح کامپوزیت پلیمری FRP شرکت افزیر از جنس الیاف شیشه و یا کربن، راه‌حلی ایده‌آل برای تعمیر و مقاوم سازی دیوار بتنی، بنایی غیرمسلح، آجری و جان‌پناه محسوب می‌شوند. از جمله المان های سازه ای که قابل مقاوم سازی به کمک مصالح کامپوزیت پلیمری FRP شرکت افزیر هستند می‌توان به موارد زیر اشاره کرد: دیوارهای برشی بتنی مسلح دیوارهای بتنی غیر مسلح دیوارهای بنایی مخازن سرامیکی

        لایه های مصالح کامپوزیت پلیمری FRP شرکت افزیر، در تقویت خمشی و برشی دیوارها، مقاوم سازی لرزه‌ای و انفجاری، تعویض فولاد خورده شده، آب بندی و … کاربرد دارد. به طور جزئی تر، هدف از مقاوم‌ سازی دیوار به کمک لایه ‌های مصالح کامپوزیت پلیمری FRP شرکت افزیر را می‌توان موارد زیر دانست: افزایش مقاومت خمشی افزایش مقاومت برشی افزایش سختی افزایش مقاومت در برابر انفجار کنترل گسترش ترک افزایش دوام و عمر آب‌بند و عایق نمودن افزایش شکل‌پذیری ترمیم ناشی از خوردگی افزایش مقاومت در برابر خوردگی

        استفاده رایج دیگر لایه های مصالح کامپوزیت پلیمری FRP به منظور مقاوم سازی دیوار دارای نواحی بازشو است. این لایه های مصالح کامپوزیت پلیمری FRP شرکت افزیر که به صورت ورقه هایی با ضخامت تقریبی 1/3 میلی‌متر اجرا می‌شوند، مشابه کاغذ دیواری نصب می‌شوند. عمل آوری این لایه های مصالح کامپوزیت پلیمری FRP شرکت افزیر، حداکثر 1 روز به طول می‌انجامد و مقاومت کششی آنها 3 برابر فولاد است. کارشناسان شرکت مقاوم سازی افزیر بسته به نیاز شما، تعداد و جهت گیری لایه های مصالح کامپوزیت پلیمری FRP را محاسبه کرده و نقشه ها و جزییات دقیق را در اختیار شما قرار می‌دهند.   برای دیدن عکس در اندازه واقعی روی آن کلیک کنید مقاوم‌ سازی دیوارها به کمک لایه های مصالح کامپوزیت پلیمری FRP   ویژگی‌ها و مزایای استفاده از FRP افزایش مقاومت خمشی و برشی دیوارها حداکثر افزایش ضخامت دیوار به میزان 5 میلی‌متر سبکی و افزایش حداقلی وزن دیوار افزایش مقاومت کل دیوار حتی درصورت پوشاندن سطح کوچکی از آن عمل‌کرد آب‌بندی کاهش بسیار زیاد نرخ خوردگی دیوار قابلیت اتصال مناسب به انواع دیوار اعم از بتنی، آجری و … عدم نیاز به هم پوشانی زیاد و در نتیجه ارزان تر بدون این روش

          هزینه اجرای مقاوم سازی دیوار با مصالح کامپوزیت پلیمری FRP شرکت افزیر برای مشاوره و کسب اطلاع درمورد هزینه اجرای مقاوم سازی دیوار با کارشناسان شرکت مقاوم سازی افزیر در تماس باشید.   مقاوم سازی دیوار برشی با FRP جهت تامین ظرفیت و عملکرد مورد انتظار، تقویت، ترمیم و مقاوم سازی دیوارهای بتنی و نیز بنایی می‌توان از سیستم FRP استفاده کرد. استفاده از سیستم FRP جهت مقاوم سازی دیوار برشی، ضمن افزایش مقاومت خمشی و برشی، باعث توزیع تنش در کل صفحه به جای تمرکز در یک نقطه خاص می‌شود. لذا دیوار در مقابل بارهای جانبی دینامیکی و رفت و برگشتی زلزله و محیط های مستعد خوردگی محافظت می‌گردد. در مجموع می‌توان با مصالح FRP به موارد زیر دسترسی پیدا کرد: مقاوم سازی دیوار های بتنی با FRP جهت افزایش مقاومت خمشی مقاوم سازی دیوار های برشی بتنی با FRP جهت افزایش مقاومت برشی افزایش سختی دیوار بتنی با FRP افزایش مقاومت در برابر انفجار کنترل گسترش ترک افزایش دوام و عمر – افزایش مقاومت در برابر خوردگی آب بند و عایق نمودن دیوار بتنی با FRP افزایش شکل پذیری دیوار بتنی با استفاده از FRP ترمیم ناشی از خوردگی دیوار بتنی با استفاده از FRP

        تقویت سازه ای دیوارهای برشی با FRP انواع مختلف دیوارهای سازه ای مسلح و غیر مسلح را می‌توان با مصالح FRP مقاوم سازی کرد که عبارتند از: مقاوم سازی دیوارهای برشی بتنی با FRP، تقویت دیوارهای بتنی غیر مسلح با FRP و مقاوم سازی دیوارهای بنایی با FRP. الف- تقویت برشی دیوارمقاوم سازی شده با مصالح FRP برای جبران ضعف برشی دیوار، الیاف و ورقهای FRP در راستای طول دیوار موازی با آرماتورهای عرضی به صورت افقی در دو وجه دیوار FRP نصب می‌گردد. نحوه عملکرد FRP بدین صورت می‌باشد که پس از ایجاد ترک برشی در بتن، کرنش در  FRP در آن منطقه افزایش یافته و نیروها به FRP منتقل می‌گردد. نتایج نشان می دهد که تقویت برشی دیوار با صفحات FRP سبب افزایش مقاومت تسلیم، مقاومت نهایی و شکل پذیری دیوار می‌گردد. ظرفیت برشی FRP در این حالت بر اساس ظرفیت برشی مقاطع مستطیل شکل دورپیچ شده با الیاف FRP مشخص می‌گردد. ب – تقویت خمشی دیوار برشی بتنی مقاوم سازی شده با FRP برای جبران ضعف خمشی دیوار ورق و الیاف FRP در راستای ارتفاع دیوار موازی با آرماتورهای طولی بر روی آن بطور قائم نصب می‌گردد. طریقه نصب معمولاً به این صورت می‌باشد که الیاف FRP در دو وجه دیوار نصب می‌گردد. نحوه همکاری الیاف  FRP در تحمل خمش وارد بر دیوار، همانند نقشی است که آرماتورهای اصلی (قائم) درون دیوار ایفا می کند، در صورتیکه الیاف FRP به منظور افزایش مقاومت خمشی بر روی دیوار به صورت ارتفاعی استفاده شود، لازم است که انتهای آن به نحو مناسبی در پای دیوار مهار گردد تا نیروهای درون این صفحات به تکیه گاه پای دیوار انتقال یابد. برای مهار انتهای صفحات خمشی می‌توان از یک مقطع نبشی فولادی در مجاورت تکیه گاه دیوار که بر آن پیچ می‌گردد و یا از یک صفحه برشی FRP عمود بر لایه FRP خمشی در انتهای لایه استفاده نمود حالت شکست دیواری که دارای ضعف خمشی می باشد، با شروع ترکهای کششی به صورت افقی در لبه های دیوار نزدیک پای دیوار ایجاد می‌گردد و پس از آن خارجی ترین میلگردهای کششی تسلیم می گردند. تقویت خمشی دیوار با صفحات FRP سبب افزایش مقاومت ترک خوردگی، مقاومت تسلیم، سختی ثانویه در هنگام تسلیم و افزایش مقاومت نهایی دیوار می گردد. نوع شکست نیز به حالت شکل پذیر خمشی می‌باشد و شکست آن به صورت خرد شدن پنجه دیوار تحت فشار رخ می‌دهد. تا پیش از ترک خوردن بتن و جاری شدن فولاد داخل دیوار، مقدار مشارکت الیاف FRP در تحمل بارهای وارد کم است، اما پس از جاری شدن فولاد خمشی و ترک خوردن بتن کششی سهم FRP در تحمل خمش وارده به عضو به نحو قابل ملاحظه‌ای افزایش می‌یابد. حالت شکست در این نوع تقویت تا لحظه‌ای که FRP از روی سطح بتن جدا شده است شکلپذیر ولی پس از آن کاهش شدید در ظرفیت باربری عضو ایجاد می گردد. در صورتیکه از هر دو تقویت خمشی و برشی به صورت قرارگیری الیاف FRP به طور افقی و عمودی بر روی دیوار به صورت توام استفاده گردد افزایش در بار تسلیم، سختی ثانویه مقاومت نهایی و شکل پذیری، بیشتر از حالتهای قبل می‌باشد. در این سیستم مقاوم سازی با FRP قرارگیری الیاف به صورت افقی خود مهار کننده الیاف خمشی می‌باشند. پ- افزایش شکل پذیری دیوار برشی بتنی مقاوم سازی شده با FRP کمبود شکل پذیری به عنوان عمده ترین ضعف دیوارهای برشی موجود برای مقابله با نیروی جانبی زلزله محسوب می‌گردد. از جمله مهمترین علل این کمبود می توان به وصله آرماتورهای طولی در نواحی مستعد تشکیل مفصل پلاستیک، محصور شدگی ناکافی در نواحی مرزی و مهار ناکافی آرماتورهای عرضی اشاره نمود. حالت شکست در این حالات به صورت ناگهانی و ترد می باشد و منجر به افت شدید ظرفیت باربری می گردد. بطور کلی جهت رسیدن به شکل پذیری مناسب لازم است که از تمام حالات شکست ترد اجتناب نمود. از طرف دیگر انرژی وارد به دیوار نیز باید از طریق ایجاد مفصل پلاستیک در ارتفاع دیوار جذب و مستهلک گردد .بنابراین در نواحی مستعد تشکیل مفصل پلاستیک، لازم است که المانهای مرزی به نحو مناسبی محصور گردند و از کمانش آرماتورهای طولی دیوار در این قسمتها نیز جلوگیری بعمل آید. در صورتیکه  FRPبرشی به صورت کامل از طریق دورپیچ دیوار (محصوریت خارجی) و یا اتصال FRP برشی سبب محصور شدگی آرماتورها می گردد دورپیچ FRP در این حالت در واقع سبب محصور کردن و محدود کردن ترکهای ایجاد شده در راستای آرماتورهای طولی می‌گردد. بطور کلی ظرفیت برشی دیوار مقاوم سازی شده با  FRP باید به حدی باشد که امکان تشکیل مفصل پلاستیک در طول دیوار بدون وقوع شکست برشی انجام گیرد. رفتار نیرو – تغییر مکان دیوار تقویت شده با FRP در محل وصله به کمک حلقه های هیسترتیک نشان می‌دهد که مقدار زیادی خمش غیر الاستیک در پای دیوار ایجاد می‌گردد که سبب جذب مقدار قابل توجهی انرژی می‌گردد. همچنین رفتار هیسترتیک دیوارهای تقویت شده با FRP با استفاده از نمودار ب نیرو – تغییر مکان نشان می‌دهد که تقویت با FRP روشی موثر برای افزایش محصور شدگی المانهای مرزی و مهار شدگی آرماتورهای عرضی دیوار می باشد. همچنین برای افزایش میزان تاثیر کامپوزیت FRP  در مقاوم سازی دیوارهای بتنی می‌توان دیوار را به صورت داخلی محصور نمود. برای این عمل لازم است که دیوار از طریق کاشت میلگرد و ارماتور پیوسته به چند قسمت تقسیم گردند در این حالت به صورت داخلی با بولت و به صورت خارجی با الیاف FRP  محصور می‌گردند. نمونه ای از دیوارها مقاوم سازی شده با مصالح FRP  در زیر نشان داده شده است.
    • توسط afzir
       
      مقاوم‌ سازی ستون بتنی با FRP
      روش مقاوم‌ سازی ستون بتنی با FRP به منظور تقویت و افزایش مقاومت ستون بتنی در برابر زلزله، سایش، خوردگی، حرارت، آتش سوزی و یا باز گرداندن ستون به عملکرد دلخواه مورد استفاده قرار می‌گیرد. در ساختمان ها اغلب زنگ زدگی، خوردگی، افزایش بار زنده یا مرده و خطاهای ساخت، منجر به ضعیف شدن ستون ها می شود که نیاز به مقاوم سازی دارند. استفاده از مصالح FRP یک روش سریع و مقرون به صرفه برای مقاوم سازی ستون های بتنی می‌باشد. امروزه قیمت مقاوم سازی ستون بتنی با FRP در مقایسه با روش های سنتی کم بوده و نحوه اجرای آن آسان و ارزان می‌باشد.   هنگامی که ستون تحت بارهای لرزه ای قرار می گیرد، مسئله ظرفیت جذب انرژی و شکل پذیری ستون اهمیت می یابد که استفاده ازالیاف FRP ضمن افزایش ظرفیت برشی ستون، مد گسیختگی آن را از حالت برشی به خمشی تغییر داده و شکل پذیری را به میزان قابل توجهی افزایش می دهد. با افزایش میزان بار وارده بر ستون، بتن تمایل دارد در جهت عمود بر جهت اعمال بار از هم باز شود. محصور کردن عرضی بتن با پوشش FRP (دور پیچ کردن) توسط افزودن لایه هایی از الیاف شیشه و کربن مقاومت نهایی ستون را تا 2 برابر افزایش می دهد و البته تاثیر مهم تر این الیاف در افزایش 5 برابری در ظرفیت تغییر شکل بتن است.   در جریان مقاوم سازی ستون بتنی با FRP مقاومت فشاری ستون افزایش می یابد بدین ترتیب که می توان از سیستم هایFRP ، جهت ایجاد محصورشدگی از طریق دورپیچ کامل FRP و به طبع آن افزایش مقاومت فشاری ستون بتنی استفاده نمود. در حقیقت بتن محصور شده مقاومت فشاری بسیار بالاتری نسبت به بتن محصور نشده دارد زیرا محصور کردن ستون باعث ایجاد فشار جانبی بر بتن می شود و وجود فشار محیطی بر ستون بتنی سبب افزایش مقاومت فشاری آن می شود. این امر همچنین باعث افزایش شکل پذیری اعضا تحت ترکیب نیروهای محوری و خمشی می‌شود. در این وضعیت، الیاف حلقوی FRP مشابه تنگهای بسته یا خاموتهای مارپیچ فولادی عمل می‌کنند. در محاسبه مقاومت فشاری محوری عضو باید از سهم الیاف FRP موازی با راستای طولی آن صرف نظرگردد.   در این روش قرارگیری الیاف در امتداد عمود بر محور طولی عضو به صورت دورپیچ کامل، سبب ایجاد محصورشدگی انفعالی (Passive) در عضو می گردد. از این رو FRP تا زمان بارگذاری و رخداد تغییرشکل های عرضی در ستون بتنی موجود منفعل بوده و تحت تنش قرار نگرفته و تاثیری در باربری عضو ندارد. بدین سبب اجرا و نصب استاندارد و اطمینان از چسبندگی کامل بین بتن و FRP در این روش مقاوم سازی بسیار حائز اهمیت می باشد. از این رو شرکت مقاوم سازی افزیر با بکارگیری مهندسان و کارشناسان با تجربه و کار آزموده در زمینه طراحی و اجرای دقیق پروژه های مقاوم سازی ستون بتنی با FRP اطمینان کافی را  برای اجرای دقیق انواع پروژه های مقاوم سازی با FRP می دهد.
        برای دیدن عکس در اندازه واقعی روی آن کلیک کنید روش مقاوم‌ سازی ستون بتنی با FRP   هنگامی که ستون یا عضو فشاری تحت بارهای لرزه‌ای قرار می‌گیرد، مسئله ظرفیت جذب انرژی و شکل‌پذیری ستون اهمیت می‌یابد. در این ارتباط مقاوم سازی یا بهسازی آن عضو با افزایش شکل‌پذیری انجام می‌گیرد، از معایب این روش هزینه بالای آن، رفتار تردشکن و مقاومت کم آن در برابرآتش‌سوزی می‌باشد.
      انواع ستون‌های بتنی که می‌توان با مصالح FRP تقویت نمود، عبارتند از: ستون های گرد بتنی، ستونهای لوله بتنی ستون های کتابی یا مستطیلی ستون های مربعی بتنی ستونهای پیش ساخته بتنی
       
      مزایا و خصوصیات مقاوم‌ سازی ستون بتنی با FRP افزایش مقاومت خمشی ستون افزایش مقاومت برشی ستون افزایش مقاومت فشاری ستون افزایش مقاومت در برابر خوردگی افزایش دوام و عمر کنترل گسترش ترک و عرض ترک ضخامت کم ورقه های FRP و عدم تغیر قابل توجه در ابعاد تیر سهولت در اجرا هزینه پایین نسبت به روش های مرسوم دیگر افزایش شکل پذیری
         
        اجرای FRP جهت مقاوم سازی ستون بتنی
       
      طراحی و محاسبات مقاوم‌ سازی ستون بتنی با FRP
        همانگونه که اشاره شد بتن محصور شده مقاومت فشاری بسیار بالاتری نسبت به بتن محصور نشده دارد. محصور کردن ستون باعث ایجاد فشار جانبی بر بتن می شود و وجود فشار محیطی بر عضو بتنی سبب افزایش مقاومت فشاری آن می‌شود. محصور شدگی با جلوگیری از گسترش بارهای خارج از محور در ستون، ظرفیت تحمل بار محوری را افزایش می دهد.
       
      منحنی تنش کرنش مقاوم‌ سازی ستون بتنی با FRP
        منحنی تنش – کرنش یک ستون بتنی در حالت های محصور نشده و محصور شده با FRP در سطوح مختلف محصورشدگی در شکل زیر نشان داده شده است. این شکل بخوبی گویای تاثیر محصورشدگی در افزایش مقاومت فشاری عضو بتنی با FRP بوده و علاوه بر آن نشان دهنده تاثیر محسوس محصورشدگی بر افزایش کرنش نهایی بتن می باشد. این موضوع افزایش شکل پذیری المان بتنی محصور شده با FRP را به همراه خواهد داشت.       برای دیدن عکس در اندازه واقعی روی آن کلیک کنید
        محصور شدگی بتن با FRP
      ااز الیاف کامپوزیت به صورت دور پیچ خارجی برای تقویت ستون های بتنی استفاده میشود، که مکانیزم تقویت این روش ، افزایش محصوریت ستون است. در  نمودار فوق تنش-کرنش ستون تقویت شده با الیاف اورده شده است
       
      این نمودار شامل دو بخش خطی(الاستیک) و غیر خطی (غیر الاستیک) می باشد. با توجه به این نمودار در میابیم که در قسمت خطی بتن محصور شده و غیر محصور شده تفاوتی نداشته اند که دلیل این موضوع عدم انبساط جانبی زیاد بتن در بارهای کم می باشد که این موضوع نشان میدهد نوع ژاکت استفاده شده برای مقاوم سازی در میزان مقاومت بتن در ناحیه خطی تاثیر زیادی  ندارد. ناحیه خمیری در بتن محصور نشده بلافاصله بعد از رسیدن به بیشینه مقاومت خود، تشکیل می شود. در این حالت به علت زیاد شدن کرنش های جانبی بتن و افزایش انبساط، دورپیج مورد استفاده فعال می شود.
      در ناحیه پلاستیک با افزایش جزئی در تنش محوری، انبساط جانبی به مقدار قابل توجهی افزایش پیدا میکند. این افزایش حجم به دلیل گسترش ترک ها و تخریب ساختار داخل بتن باعث افزایش فشار محصور کنندگی دورپیچ می شود. و با علم بر اینکه الیاف تا لحظه گسیختگی رفتار خطی دارند، نقش بسزای در قسمت خمیری منحنی دارا می باشند.
      اگر بتن دارای محصوریت مکفی باشد ناحیه خمیری مثبت و کاملا خطی بوده است  که این نشان دهنده این باشد که محصوریت، ظرفیت باربری بیشتری را ایجاد کرده است و اگر بتن خوب محصور نشده باشد، تنش محوری حداکثر، همانند حالت بتن غیر محصور می باشد.

      انواع روش های مقاوم‌ سازی ستون بتنی با FRP
      دورپیچ کامل با FRP
        از سیستم های FRP، می‌توان جهت ایجاد محصورشدگی از طریق دورپیچ کامل FRP و به طبع آن افزایش مقاومت فشاری المان بتنی استفاده نمود. در این روش، قرارگیری الیاف FRP در امتداد عمود بر محور طولی عضو به صورت دورپیچ کامل، سبب ایجاد محصورشدگی انفعالی (Passive) در عضو می‎گردد. از این رو FRP تا زمان بارگذاری و رخداد تغییرشکل های عرضی در المان بتنی موجود منفعل بوده و تحت تنش قرار نگرفته و تاثیری در باربری عضو ندارد. بدین سبب اجرا و نصب استاندارد و اطمینان از چسبندگی کامل بین بتن و FRP در این روش مقاوم سازی بسیار حائز اهمیت می‌باشد.
      تقویت ترکیب فشاری – خمشی
        دورپیچ کامل یا ژاکت FRP ، می‌تواند جهت ایجاد محصورشدگی و در نتیجه افزایش مقاومت ستونها و المان های بتنی تحت ترکیب نیروهای فشاری و خمشی مورد استفاده قرار گیرد. لذا توجه به هشدار فنی در خصوص استفاده از FRP جهت تقویت فشاری – خمشی سازه های بتنی زیر بسیار حائز اهمیت است. افزایش قابل ملاحظه مقاومت تنها در صورتیکه نقطه متناظر با نیروی فشاری و خمشی نهایی در بالای خط متصل کننده مبدا به نقطه بالانس در منحنی P-M باشد محقق خواهد شد. همانطور که از دیاگرام  P-M در دو حالت محصور شده با FRP و محصور نشده مطابق شکل قابل دریافت است، محدودیت مذکور از این واقعیت که افزایش مقاومت در نتیجه محصورشدگی با FRP تنها برای المان های با مود شکست حاکم فشاری قابل ملاحظه می باشد، نشات می گیرد.
        برای دیدن عکس در اندازه واقعی روی آن کلیک کنید
        منحنی اندرکنش ستون تقویت شده با مصالح FRP
       
      مکانیزم های شکست ستون های بتنی تحت بار زلزله و نیاز به مقاوم‌ سازی ستون بتنی با FRP
      شکست برشی ستون های بتنی
        نامطلوب ترین حالت شکست، شکست برشی ستون است که ابتدا ترکهای مایل و مورب در بتن ظاهر می‌شوند و پس از گسیختگی و یا باز شدن فولاد عرضی مقطع یا خاموت (تنگ) روی می‌دهد. در نهایت با کمانش آرماتورهای طولی یک شکست ترد و یا انفجاری رخ می دهد این حالت شکست اساسا به دلیل کافی نبودن آرماتورهای عرضی مقطع رخ می دهد. ضعف خمشی، برشی و فشاری و حتی شکل پذیری ستون های بتنی را می‌توان از طریق مصالح کامپوزیتی FRP ارتقاء داد.
      خرابی ناشی از ایجاد مفصل پلاستیک خمشی در ستون های بتنی
        این حالت شکست پس از وقوع زلزله بسیار به چشم می خورد و عموما در مناطق انتهایی ستون روی می دهد و به ناحیه کوچکی منحصر می‌شود. در این حالت ابتدا قسمتی از پوشش بتن کنده می‌شود و سپس شکست آرماتورهای عرضی و در ادامه کمانش آرماتورهای طولی اتفاق می‌افتد. این ضعف ستون های بتنی را میتوان با دورپیچی الیاف FRP در محل اتصال تیر به ستون بر طرف نمود.
      خرابی در محل وصله پوششی آرماتورهای طولی در ستون های بتنی
        این حالت در ستونهایی روی می‌دهد که آرماتورهای طولی آنها در محلی که لنگر وارده زیاد است با یکدیگر همپوشانی دارند عموما در هنگام زلزله، انتهای ستون تحت خمش زیادی قرار می گیرد چنانچه طول وصله بسیار کوچک باشد در طول بارگذاری رفت و برگشتی آرماتورها جدا خواهند شد. با استفاده از سیستم تقویت با FRP به روش محصورسازی در محل هایی که آرماتورهای طولی همپوشانی کافی ندارند می‌توان از این نوع خرابی جلوگیری کرد.       برای دیدن عکس در اندازه واقعی روی آن کلیک کنید
        مقاوم سازی ستون گرد بتنی با FRP   برای دیدن عکس در اندازه واقعی روی آن کلیک کنید
    • توسط afzir
      1.علت استفاده از CFRP در بتن
      در سال های اخیر، مقاوم سازی سازه های موجود بطور فزاینده ای مهم شده است. دلایل مختلفی باعث این امر شده است که فرسودگی سازه ها، افزایش خطاهای طراحی و اجرائی از جمله این عوامل هستند. بعلاوه، بسیاری از سازه های موجود، به علت افزایش بار های وارده، نیاز به افزایش مقاومت دارند
      از نقطه نظر محیط زیستی و اقتصادی نیز ترمیم، تعمیر، تقویت و مقاوم سازی سازه های موجود بر تخریب و دوباره سازی سازه ها ارجحیت دارد. همچنین در بسیاری از موارد، مقاوم سازی سازه ها کم هزینه تر و کم دردسرتر از نوسازی آن ها است. علاوه بر این، سرعت مقاوم سازی بیش از نوسازی بوده که باعث خارج شدن سازه از سرویس دهی برای مدت طولانی است
      از جمله پیشرفت های اخیر در صنعت مقاوم سازی، استفاده از روکش های تقویت کننده پلیمر های مسلح شده با الیاف (FRP )است که برای مقاوم سازی سازه های بتنی، فولادی، بنائی و حتی چوبی به کار گرفته میشود. پذیرش روش مقاوم سازی با سیستم FRP ارتباط نزدیکی با سطح اعتماد مهندسان سازه، مسئولان و کارفرمایان به این روش دارد. اعتماد کافی میتواند از طریق انجام آزمایش های استاندارد و درک بهتر رفتار سازه های تقویت شده با FRP در شرایط مختلف بدست آید. درک درست از رفتار سازه در شرایط عادی، دمای بالا ودمای پایین،برای پذیرش این روش ضروری است
      در سال 2003 میلادی،برای بررسی نیاز های تحقیقاتی در حوزه مواد FRP برای مقاوم سازی سازه های بتنی، کمیته ای تشکیل شد. در این بررسی ها مشخص شد که “دوام” و “مقاومت در برابر آتش” سیستم های FRP ،نیازمند بررسی های جدی است. یکی از جنبه های “دوام” این بررسی ها که ارتباط نزدیکی با مقاومت در برابر آتش دارد، اثر دمای بالا بر رفتار سازه های تقویت شده با FRP است
      در مطلاعه ای دیگر که برای شناسایی و اولویت بندی اطلاعات مهم مرتبط با دوام ورق ها و میلگرد های FRP انجام شد، مشخص شد که اطلاعات موجود در رابطه با سازه های تقویت شده با FRP ،زمانی که در معرض دماهای بالا و یا چرخه های یخ و ذوب قرار می گیرند،بسیار اندک است
      در نشریه شماره 345 سازمان مدیریت و برنامه ریزی کشور، اثر آتش سوزی روی سازه های تقویت شده با FRP بصورت یک بار ویژه بهشمار میرود که در آن سهم FRP در مقاومت، ناچیز در نظر گرفته میشود . این موضوع بدان معناست که پس ازنبود FRP ،سازه باید توانایی مقاومت در برابر بارهای وارده با ضرایب ایمنی مورد نظررا (ضرایب بار و مصالح) داشته باشد. اعتقاد بر این است که بدین ترتیب از ریزش ناگهانی سازه تقویت شده با FRP پس ازبین رفتن یک باره چسبندگی بین بتن و FR (بطور مثال در هنگام آتش سوزی و یا خرابکاری) جلوگیری میشود .
      این پیشنهاد ها، مقدار حداکثرافزایش مقاومت حاصله را به تفاوت ضرایب ایمنی مربوط به ترکیب بارهای ویژه و ترکیب بارهای نهایی محدود می کند. در مطالعات صورت گرفته، مشخص شده است که چسبندگی موجود بین بتن و لایه FRP ،در نزدیکی و یا بالای دمای گذار شیشه ای چسب یعنی Tg ،از بین میرود. رفتار FRP های تقویتی میتواند تحت تاثیر تغییرات دمایی محیط بهره برداری، به دلیل اختلاف زیاد بین ضرایب انبساط دمایی بتن و FRP باشد. وجود این اختلاف، تنش های حرارتی در محل اتصال FRP با چسب وچسب با بتن را موجب می‌‌شود که بر رفتار سازه تاثیر می گذارد. علاوه بر این، مشخصات فاز های مختلف بتن، چسب، FRP و مرز بین آنها تحت تاثیر قرار میگیرند. گفته میشود که افزایش دما، تاثیرات منفی خاصی روی چسب موجود، حتی در دماهای پایین تر از دمای گذار شیشه ای چسب دارد
      هدف اصلی تحقیقاتی که نتایجش در این مقاله آورده شده است، درک صحیح از رفتار تیرهای بتنی مقاوم شده باCFRP انعطاف پذیر و سخت، تحت شرایط دمایی بالا و نیز یخ زدگی بوده است که با بکارگیری تیر های بتنی و چسباندن ورق های CFRP و تعیین مقاومت نهائی آنها در خمش، نوع شکست این نمونه ها نیز مورد بررسی قرارگرفت. بدین منظور 24 نمونه تیر بتنی بدون آرماتور به ابعاد 350×100×100 میلیمتر ساخته شدند. در این نمونه ها از سه رده مقاومتی بتن استفاده وسپس با CFRP سخت وانعطافپذیر بصورت خمشی تقویت شده و تحت سیکل های تغییر دمایی C °-20 ,C °+50 و C °+80 قرار گرفته و بوسیله دستگاه آزمون خمشی 4 نقطه ای تست شده و با نمونه های شاهد قرار گرفته در محیط اتاق از نظر مقاومت نهایی، نوع شکست و غیره مقایسه شدند.
      2 -اثر گرما برخواص مواد
      یک سازه بتنی مقاوم شده با FRP از موادی مانند بتن، میلگرد، FRP و چسب تشکیل شده است. بعضی از این مواد بیشتر تحت تاثیر حرارت قرار میگیرند، بویژه مشخصات چسب بطور قابل توجهی حدود دمای گذار شیشه ای تغییر می کند. دمای گذار شیشه ای دمایی است که در آن مواد بیشکل مانند شیشه یا پلیمرهایی با جرم مولکولی بالا، از حالات شکنندگی به حالات خمیری تبدیل میشوند